Medicare Advantage Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

Applies to all products administered or underwritten by the Health Plan, unless otherwise provided in the applicable contract. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically.

Services Are Considered Investigational

Coverage is not available for investigational medical treatments or procedures, drugs, devices or biological products.

Based on review of available data, the Health Plan considers automated percutaneous discectomy as a technique of intervertebral disc decompression in individuals with back pain and/or radiculopathy related to disc herniation in the lumbar, thoracic, or cervical spine to be **investigational.***

Based on review of available data, the Health Plan considers percutaneous endoscopic discectomy as a technique of intervertebral disc decompression in individuals with back pain and/or radiculopathy related to disc herniation in the lumbar, thoracic, or cervical spine to be **investigational.***

Background/Overview

Back pain or radiculopathy related to herniated discs is an extremely common condition and a frequent cause of chronic disability. Although many cases of acute low back pain and radiculopathy will resolve with conservative care, surgical decompression is often considered when the pain is unimproved after several months and is clearly neuropathic in origin, resulting from irritation of the nerve roots. Open surgical treatment typically consists of discectomy in which the extruding disc material is excised. When performed with an operating microscope, the procedure is known as a microdiscectomy.

Minimally invasive options have also been researched, in which some portion of the disc is removed or ablated, although these techniques are not precisely targeted at the offending extruding disc material. Ablative techniques include laser discectomy and radiofrequency decompression. Intradiscal electrothermal annuloplasty is another minimally invasive approach to low back pain. In this technique, radiofrequency energy is used to treat the surrounding disc annulus.

Herein, this policy addresses automated percutaneous and endoscopic discectomy, in which the disc decompression is accomplished by the physical removal of disc material rather than its ablation. Traditionally, discectomy was performed manually through an open incision, using cutting forceps to remove nuclear material from within the disc annulus. This technique was modified by automated devices that involve placement of a probe within the intervertebral disc and aspiration of disc material using a suction cutting device. Endoscopic techniques may be intradiscal or may involve extraction of noncontained and sequestered disc fragments from inside the spinal canal using an

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

interlaminar or transforaminal approach. Following insertion of the endoscope, decompression is performed under visual control.

FDA or Other Governmental Regulatory Approval

U.S. Food and Drug Administration (FDA)

The Dekompressor^{®‡} Percutaneous Discectomy Probe (Stryker), Herniatome Percutaneous Discectomy Device (Gallini Medical Devices), and the Nucleotome^{®‡} (Clarus Medical) are examples of percutaneous discectomy devices that have been cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. The FDA indication for these products is for "aspiration of disc material during percutaneous discectomies in the lumbar, thoracic and cervical regions of the spine." FDA product code: HRX.

A variety of endoscopes and associated surgical instruments have also been cleared for marketing by FDA through the 510(k) process.

Rationale/Source

This medical policy was developed through consideration of peer-reviewed medical literature generally recognized by the relevant medical community, U.S. Food and Drug Administration approval status, nationally accepted standards of medical practice and accepted standards of medical practice in this community, technology evaluation centers, reference to federal regulations, other plan medical policies, and accredited national guidelines.

Surgical management of herniated intervertebral discs most commonly involves discectomy or microdiscectomy, performed manually through an open incision. Automated percutaneous discectomy involves placement of a probe within the intervertebral disc under image guidance with aspiration of disc material using a suction cutting device. Endoscopic discectomy involves the percutaneous placement of a working channel under image guidance, followed by visualization of the working space and instrumentation through an endoscope, and aspiration of disc material.

Summary of Evidence

For individuals who have herniated intervertebral disc(s) who receive automated percutaneous discectomy, the evidence includes randomized controlled trials (RCTs) and systematic reviews of observational studies. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. The published evidence from small RCTs is insufficient to evaluate the impact of automated percutaneous discectomy on the net health outcome. Well-designed and executed RCTs are needed to determine the benefits and risks of this procedure. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have herniated intervertebral disc(s) who receive percutaneous endoscopic discectomy, the evidence includes a number of RCTs, systematic reviews, and observational studies. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

morbidity. Many of the more recent RCTs are conducted at institutions within China. There are few reports from the United States. Results do not reveal a consistently significant improvement in patient-reported outcomes and treatment-related morbidity with percutaneous endoscopic discectomy in comparison to other discectomy interventions. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Supplemental Information

Clinical Input From Physician Specialty Societies and Academic Medical Centers

While the various physician specialty societies and academic medical centers may collaborate with and make recommendations during this process, through the provision of appropriate reviewers, input received does not represent an endorsement or position statement by the physician specialty societies or academic medical centers, unless otherwise noted.

2018 Input

Clinical input was sought to help determine whether the use of automated percutaneous discectomy or endoscopic percutaneous discectomy for individuals with herniated intervertebral discs would provide a clinically meaningful improvement in net health outcome and whether the use is consistent with generally accepted medical practice. In response to requests, clinical input was received from 3 respondents, including 2 specialty society-level response(s); no physician-level responses identified through a specialty society; 1 physician-level response identified through an academic medical center.

For individuals who have herniated intervertebral discs who receive automated percutaneous discectomy or percutaneous endoscopic discectomy, clinical input does not support a clinically meaningful improvement in net health outcome and does not indicate this use is consistent with generally accepted medical practice. Clinical input suggests that automated percutaneous discectomy may be an appropriate treatment option for the highly selected patient who has a small focal disc fragment compressing a lumbar nerve causing radiculopathy in the absence of lumbar stenosis or severe bony foraminal stenosis. Similarly, clinical input suggests that endoscopic percutaneous discectomy may be an appropriate treatment option for the highly selected patient who has a small focal disc herniation causing lumbar radiculopathy. However, respondents were mixed in the level of support for this indication, and overall, the clinical input is not generally supportive of a clinically meaningful improvement in net health outcome.

2013 Input

In response to requests, input was received from 4 physician specialty societies and 3 academic medical centers while this policy was under review in 2013. Overall, input agreed that percutaneous and endoscopic discectomy are investigational. Most reviewers considered discectomy with tubular retractors to be a variant of open discectomy, with the only difference being the type of retraction used.

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

Practice Guidelines and Position Statements

Guidelines or position statements will be considered for inclusion in 'Supplemental Information' if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

American Pain Society

The clinical practice guidelines from the American Pain Society (2009) found insufficient evidence to evaluate alternative surgical methods to standard open discectomy and microdiscectomy, including laser or endoscopic-assisted techniques, various percutaneous techniques, coblation nucleoplasty, or the Dekompressor.

American Society of Interventional Pain Physicians

The guidelines from the American Society of Interventional Pain Physicians (2013) indicated that the evidence for percutaneous disc decompression with the Dekompressor was limited. There were no recommended indications for the Dekompressor.

American Society of Pain and Neuroscience

The American Society of Pain and Neuroscience (ASPN; 2022) published clinical guidance for interventional treatments for low back pain. The guideline states that discectomy procedures (such as percutaneous and endoscopic disc procedures) have favorable safety and efficacy profiles for the treatment of lumbar disc herniation with persistent radicular symptoms; however, it is stated that further research is needed to evaluate complications rates in order for these procedures to supplant classic open microdiscectomy. Recommendations specific to percutaneous endoscopic discectomy are summarized in Table 1.

Table 1. Recommendations for Percutaneous and Endoscopic Procedures

Recommendation	Grade ^a	Level of Evidence ^b	Level of Certainty [Net Benefit] ^c
Percutaneous Endoscopic Discectomy	В	I-A	High

^a Grade B: The ASPN Back Group recommends the service. There is high certainty that the net benefit is moderate or there is moderate certainty that the net benefit is moderate to substantial. ^b Evidence Level: I-A: At least one controlled and randomized clinical trial, properly designed

National Institute for Health and Care Excellence

The NICE (2005) published guidance on automated percutaneous mechanical lumbar discectomy, indicating there was limited evidence of efficacy based on uncontrolled case series of heterogeneous

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

groups of patients, and evidence from small randomized controlled trials (RCTs) showed conflicting results. The guidance indicated that, in view of uncertainty about the efficacy of the procedure, it should not be done without special arrangements for consent and for audit or research. The guidance was considered for an update in 2009, but failed review criteria; the 2005 guidance is therefore considered current.

A NICE (2016) guidance on percutaneous transforaminal endoscopic lumbar discectomy for sciatica was published. The guidance stated that current evidence is adequate to support the use of percutaneous transforaminal endoscopic lumbar discectomy for sciatica. Choice of operative procedure (open discectomy, microdiscectomy, or percutaneous endoscopic approaches) may be influenced by symptoms, location, and size of the prolapsed disc.

A NICE (2016) guidance on percutaneous interlaminar endoscopic lumbar discectomy for sciatica was also published. The guidance stated that current evidence is adequate to support the use of percutaneous interlaminar endoscopic lumbar discectomy for sciatica. Choice of operative procedure (open discectomy, microdiscectomy, or percutaneous endoscopic approaches) may be influenced by symptoms, location, and size of the prolapsed disc.

North American Spine Society

The North American Spine Society (2014) published clinical guidelines on the diagnosis and treatment of lumbar disc herniation. Table 2 summarizes recommendations specific to percutaneous endoscopic discectomy and automated percutaneous discectomy.

Table 2. Recommendations for Lumbar Disc Herniation With Radiculopathy

Recommendations	Grade or LOE ^a
Endoscopic percutaneous discectomy is suggested for carefully selected patients to reduce early postoperative disability and reduce opioid use compared with open discectomy.	В
There is insufficient evidence to make a recommendation for or against the use of automated percutaneous discectomy compared with open discectomy.	
Endoscopic percutaneous discectomy may be considered for treatment.	С
Automated percutaneous discectomy may be considered for treatment.	С
Patients undergoing percutaneous endoscopic discectomy experience better outcomes if <40 years and symptom duration <3 months.	II

LOE: level of evidence

^a Grade B: fair evidence (level II or III studies with consistent findings; grade C: poor quality evidence (level IV or V studies). Level of evidence II: lesser quality randomized controlled trial (eg, <80% follow-up, no blinding, or improper randomization), prospective comparative study,

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

systematic review of level II studies or level I studies with inconsistent results; level of evidence III: case control, retrospective, systematic review of level III studies; level of evidence IV: case series; level of evidence V: expert opinion.

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

Ongoing and Unpublished Clinical Trials

As of April 2025, no ongoing or unpublished studies were identified on Clinicaltrials.gov that would be relevant to this review.

References

- 1. Lewis RA, Williams NH, Sutton AJ, et al. Comparative clinical effectiveness of management strategies for sciatica: systematic review and network meta-analyses. Spine J. Jun 01 2015; 15(6): 1461-77. PMID 24412033
- 2. Haines SJ, Jordan N, Boen JR, et al. Discectomy strategies for lumbar disc herniation: results of the LAPDOG trial. J Clin Neurosci. Jul 2002; 9(4): 411-7. PMID 12217670
- 3. Manchikanti L, Abdi S, Atluri S, et al. An update of comprehensive evidence-based guidelines for interventional techniques in chronic spinal pain. Part II: guidance and recommendations. Pain Physician. Apr 2013; 16(2 Suppl): S49-283. PMID 23615883
- 4. Zhao XM, Chen AF, Lou XX, et al. Comparison of Three Common Intervertebral Disc Discectomies in the Treatment of Lumbar Disc Herniation: A Systematic Review and Meta-Analysis Based on Multiple Data. J Clin Med. Nov 08 2022; 11(22). PMID 36431083
- 5. Bai X, Lian Y, Wang J, et al. Percutaneous endoscopic lumbar discectomy compared with other surgeries for lumbar disc herniation: A meta-analysis. Medicine (Baltimore). Mar 05 2021; 100(9): e24747. PMID 33655938
- 6. Gadjradj PS, Harhangi BS, Amelink J, et al. Percutaneous Transforaminal Endoscopic Discectomy Versus Open Microdiscectomy for Lumbar Disc Herniation: A Systematic Review and Meta-analysis. Spine (Phila Pa 1976). Apr 15 2021; 46(8): 538-549. PMID 33290374
- 7. Xu J, Li Y, Wang B, et al. Minimum 2-Year Efficacy of Percutaneous Endoscopic Lumbar Discectomy versus Microendoscopic Discectomy: A Meta-Analysis. World Neurosurg. Jun 2020; 138: 19-26. PMID 32109644
- 8. Zhao XM, Yuan QL, Liu L, et al. Is It Possible to Replace Microendoscopic Discectomy with Percutaneous Transforaminal Discectomy for Treatment of Lumbar Disc Herniation? A Meta-Analysis Based on Recurrence and Revision Rate. J Korean Neurosurg Soc. Jul 2020; 63(4): 477-486. PMID 32380585

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

- 9. Yu P, Qiang H, Zhou J, et al. Percutaneous Transforaminal Endoscopic Discectomy versus Micro-Endoscopic Discectomy for Lumbar Disc Herniation. Med Sci Monit. Mar 30 2019; 25: 2320-2328. PMID 30927349
- 10. Shi R, Wang F, Hong X, et al. Comparison of percutaneous endoscopic lumbar discectomy versus microendoscopic discectomy for the treatment of lumbar disc herniation: a meta-analysis. Int Orthop. Apr 2019; 43(4): 923-937. PMID 30547214
- 11. Phan K, Xu J, Schultz K, et al. Full-endoscopic versus micro-endoscopic and open discectomy: A systematic review and meta-analysis of outcomes and complications. Clin Neurol Neurosurg. Mar 2017; 154: 1-12. PMID 28086154
- 12. Gadjradj PS, Rubinstein SM, Peul WC, et al. Full endoscopic versus open discectomy for sciatica: randomised controlled non-inferiority trial. BMJ. Feb 21 2022; 376: e065846. PMID 35190388
- 13. Ran B, Wei J, Yang J, et al. Quantitative Evaluation of the Trauma of CT Navigation PELD and OD in the Treatment of HLDH: A Randomized, Controlled Study. Pain Physician. Jul 2021; 24(4): E433-E441. PMID 34213868
- 14. Wang F, Guo D, Sun T, et al. A comparative study on short-term therapeutic effects of percutaneous transforaminal endoscopic discectomy and microendoscopic discectomy on lumbar disc herniation. Pak J Med Sci. 2019; 35(2): 426-431. PMID 31086527
- 15. Liu Y, Kim Y, Park CW, et al. Interlaminar Endoscopic Lumbar Discectomy Versus Microscopic Lumbar Discectomy: A Preliminary Analysis of L5-S1 Lumbar Disc Herniation Outcomes in Prospective Randomized Controlled Trials. Neurospine. Dec 2023; 20(4): 1457-1468. PMID 38171312
- 16. Yang X, Zhang S, Su J, et al. Comparison of Clinical and Radiographic Outcomes Between Transforaminal Endoscopic Lumbar Discectomy and Microdiscectomy: A Follow-up Exceeding 5 Years. Neurospine. Mar 2024; 21(1): 303-313. PMID 38317550
- 17. Saghebdoust S, Khadivar F, Ekrami M, et al. Transforaminal Endoscopic Lumbar Diskectomy versus Open Microdiskectomy for Symptomatic Lumbar Disk Herniation: A Comparative Cohort Study on Costs and Long-Term Outcomes. J Neurol Surg A Cent Eur Neurosurg. Nov 2024; 85(6): 561-569. PMID 37879346
- Song HP, Sheng HF, Xu WX. A case-control study on the treatment of protrusion of lumbar intervertebral disc through PELD and MED. Exp Ther Med. Oct 2017; 14(4): 3708-3712. PMID 29042967
- 19. Lee DY, Lee SH. Learning curve for percutaneous endoscopic lumbar discectomy. Neurol Med Chir (Tokyo). Sep 2008; 48(9): 383-8; discussion 388-9. PMID 18812679
- 20. Wang B, Lü G, Patel AA, et al. An evaluation of the learning curve for a complex surgical technique: the full endoscopic interlaminar approach for lumbar disc herniations. Spine J. Feb 2011; 11(2): 122-30. PMID 21296295
- 21. Tenenbaum S, Arzi H, Herman A, et al. Percutaneous Posterolateral Transforaminal Endoscopic Discectomy: Clinical Outcome, Complications, and Learning Curve Evaluation. Surg Technol Int. Dec 2011; 21: 278-83. PMID 22505002

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

- 22. Casal-Moro R, Castro-Menéndez M, Hernández-Blanco M, et al. Long-term outcome after microendoscopic diskectomy for lumbar disk herniation: a prospective clinical study with a 5-year follow-up. Neurosurgery. Jun 2011; 68(6): 1568-75; discussion 1575. PMID 21311384
- 23. Wang M, Zhou Y, Wang J, et al. A 10-year follow-up study on long-term clinical outcomes of lumbar microendoscopic discectomy. J Neurol Surg A Cent Eur Neurosurg. Aug 2012; 73(4): 195-8. PMID 22825836
- 24. Choi KC, Lee JH, Kim JS, et al. Unsuccessful percutaneous endoscopic lumbar discectomy: a single-center experience of 10,228 cases. Neurosurgery. Apr 2015; 76(4): 372-80; discussion 380-1; quiz 381. PMID 25599214
- 25. Chou R, Loeser JD, Owens DK, et al. Interventional therapies, surgery, and interdisciplinary rehabilitation for low back pain: an evidence-based clinical practice guideline from the American Pain Society. Spine (Phila Pa 1976). May 01 2009; 34(10): 1066-77. PMID 19363457
- 26. Sayed D, Grider J, Strand N, et al. The American Society of Pain and Neuroscience (ASPN) Evidence-Based Clinical Guideline of Interventional Treatments for Low Back Pain. J Pain Res. 2022; 15: 3729-3832. PMID 36510616
- 27. National Institute for Health and Care Excellence (NICE). Automated percutaneous mechanical lumbar discectomy-guidance [IPG141]. 2005; http://guidance.nice.org.uk/IPG141/Guidance/pdf/English.
- 28. National Institute for Health and Care Excellence (NICE). Percutaneous interlaminar endoscopic lumbar discectomy for sciatica [IPG555]. 2016; https://www.nice.org.uk/guidance/ipg555.
- 29. National Institute for Health and Care Excellence (NICE). Percutaneous transforaminal endoscopic lumbar discectomy for sciatica [IPG556]. 2016; https://www.nice.org.uk/guidance/ipg556.
- 30. Kreiner DS, Hwang SW, Easa JE, et al. An evidence-based clinical guideline for the diagnosis and treatment of lumbar disc herniation with radiculopathy. Spine J. Jan 2014; 14(1): 180-91. PMID 24239490
- 31. Ma C, Li H, Zhang T, et al. Comparison of Percutaneous Endoscopic Interlaminar Discectomy and Open Fenestration Discectomy for Single-Segment Huge Lumbar Disc Herniation: A Two-year Follow-up Retrospective Study. J Pain Res. 2022; 15: 1061-1070. PMID 35444463
- 32. Wang SF, Hung SF, Tsai TT, et al. Better Functional Outcome and Pain Relief in the Far-Lateral-Outside-in Percutaneous Endoscopic Transforaminal Discectomy. J Pain Res. 2021; 14: 3927-3934. PMID 35002312
- 33. Rajamani PA, Goparaju P, Kulkarni AG, et al. A 2-Year Outcomes and Complications of Various Techniques of Lumbar Discectomy: A Multicentric Retrospective Study. World Neurosurg. Dec 2021; 156: e319-e328. PMID 34555576
- 34. Jing Z, Li L, Song J. Percutaneous transforaminal endoscopic discectomy versus microendoscopic discectomy for upper lumbar disc herniation: a retrospective comparative study. Am J Transl Res. 2021; 13(4): 3111-3119. PMID 34017479
- 35. Jarebi M, Awaf A, Lefranc M, et al. A matched comparison of outcomes between percutaneous endoscopic lumbar discectomy and open lumbar microdiscectomy for the treatment of lumbar disc herniation: a 2-year retrospective cohort study. Spine J. Jan 2021; 21(1): 114-121. PMID 32683107

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

- 36. Meyer G, DA Rocha ID, Cristante AF, et al. Percutaneous Endoscopic Lumbar Discectomy Versus Microdiscectomy for the Treatment of Lumbar Disc Herniation: Pain, Disability, and Complication Rate-A Randomized Clinical Trial. Int J Spine Surg. Feb 2020; 14(1): 72-78. PMID 32128306
- 37. Chen Z, Zhang L, Dong J, et al. Percutaneous Transforaminal Endoscopic Discectomy Versus Microendoscopic Discectomy for Lumbar Disc Herniation: Two-Year Results of a Randomized Controlled Trial. Spine (Phila Pa 1976). Apr 15 2020; 45(8): 493-503. PMID 31703056
- 38. Kim CH, Chung CK, Choi Y, et al. The Long-term Reoperation Rate Following Surgery for Lumbar Herniated Intervertebral Disc Disease: A Nationwide Sample Cohort Study With a 10-year Follow-up. Spine (Phila Pa 1976). Oct 01 2019; 44(19): 1382-1389. PMID 30973508
- 39. Ahn Y, Lee SG, Son S, et al. Transforaminal Endoscopic Lumbar Discectomy Versus Open Lumbar Microdiscectomy: A Comparative Cohort Study with a 5-Year Follow-Up. Pain Physician. May 2019; 22(3): 295-304. PMID 31151337
- 40. Liu X, Yuan S, Tian Y, et al. Comparison of percutaneous endoscopic transforaminal discectomy, microendoscopic discectomy, and microdiscectomy for symptomatic lumbar disc herniation: minimum 2-year follow-up results. J Neurosurg Spine. Mar 2018; 28(3): 317-325. PMID 29303471
- 41. Sun Y, Zhang W, Qie S, et al. Comprehensive comparing percutaneous endoscopic lumbar discectomy with posterior lumbar internal fixation for treatment of adjacent segment lumbar disc prolapse with stable retrolisthesis: A retrospective case-control study. Medicine (Baltimore). Jul 2017; 96(29): e7471. PMID 28723757
- 42. Jeong, J.S.; Lee, S.H.; Lee, S.J.; Hwang, B.W. The Clinical Comparison between Open Surgery and Percutaneous Endoscopic Lumbar Discectomy in Extraforaminal Lumbar Disc Herniation. J. Korean Neurosurg. Soc. 2006, 39, 413418.
- 43. Akçakaya MO, Yörükoğlu AG, Aydoseli A, et al. Serum creatine phosphokinase levels as an indicator of muscle injury following lumbar disc surgery: Comparison of fully endoscopic discectomy and microdiscectomy. Clin Neurol Neurosurg. Jun 2016; 145: 74-8. PMID 27101087
- 44. Choi KC, Shim HK, Hwang JS, et al. Comparison of Surgical Invasiveness Between Microdiscectomy and 3 Different Endoscopic Discectomy Techniques for Lumbar Disc Herniation. World Neurosurg. Aug 2018; 116: e750-e758. PMID 29787880
- 45. Dai HJ, Zhang X, Wang LT, et al. The effect of percutaneous transforaminal endoscopic discectomy (PTED) on serum inflammatory factors and pain in patients with lumbar disc herniation after surgery. Int J Clin Exp Med 2020;13:597603.
- 46. Krappel FA, Schmitz R, Bauer E, et al. Open or endoscopic nucleotomy?. Orthopadische Praxis 2001;37:1649.
- 47. Tacconi L, Giordan E. Endoscopic transforaminal discectomy vs. far lateral discectomy for extraforaminal disc protrusions: our experience. NeuroQuantology 2019;17:1822.
- 48. Tacconi L, Signorelli F, Giordan E. Is Full Endoscopic Lumbar Discectomy Less Invasive Than Conventional Surgery? A Randomized MRI Study. World Neurosurg. Jun 2020; 138: e867-e875. PMID 32251813

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

- 49. Tao XZ, Jing L, Li JH. Therapeutic effect of transforaminal endoscopic spine system in the treatment of prolapse of lumbar intervertebral disc. Eur Rev Med Pharmacol Sci. Jul 2018; 22(1 Suppl): 103-110. PMID 30004561
- 50. Wang H, Song Y, Cai L. Effect of percutaneous transforaminal lumbar spine endoscopic discectomy on lumbar disc herniation and its influence on indexes of oxidative stress. Biomed Res 2017;28:.
- 51. Xu G, Zhang C, Zhu K, et al. Endoscopic removal of nucleus pulposus of intervertebral disc on lumbar intervertebral disc protrusion and the influence on inflammatory factors and immune function. Exp Ther Med. Jan 2020; 19(1): 301-307. PMID 31853303
- 52. Ahn SS, Kim SH, Kim DW, et al. Comparison of Outcomes of Percutaneous Endoscopic Lumbar Discectomy and Open Lumbar Microdiscectomy for Young Adults: A Retrospective Matched Cohort Study. World Neurosurg. Feb 2016; 86: 250-8. PMID 26409086
- 53. Chang F, Zhang T, Gao G, et al. Therapeutic effect of percutaneous endoscopic lumbar discectomy on lumbar disc herniation and its effect on oxidative stress in patients with lumbar disc herniation. Exp Ther Med. Jan 2018; 15(1): 295-299. PMID 29250152
- 54. Liu C, Zhou Y. Percutaneous Endoscopic Lumbar Diskectomy and Minimally Invasive Transforaminal Lumbar Interbody Fusion for Recurrent Lumbar Disk Herniation. World Neurosurg. Feb 2017; 98: 14-20. PMID 27773858
- 55. Pan Z, Ha Y, Yi S, et al. Efficacy of Transforaminal Endoscopic Spine System (TESSYS) Technique in Treating Lumbar Disc Herniation. Med Sci Monit. Feb 18 2016; 22: 530-9. PMID 26887645
- 56. Yao Y, Zhang H, Wu J, et al. Comparison of Three Minimally Invasive Spine Surgery Methods for Revision Surgery for Recurrent Herniation After Percutaneous Endoscopic Lumbar Discectomy. World Neurosurg. Apr 2017; 100: 641-647.e1. PMID 28153616
- 57. Yao Y, Zhang H, Wu J, et al. Minimally Invasive Transforaminal Lumbar Interbody Fusion Versus Percutaneous Endoscopic Lumbar Discectomy: Revision Surgery for Recurrent Herniation After Microendoscopic Discectomy. World Neurosurg. Mar 2017; 99: 89-95. PMID 27919762
- 58. Gibson JNA, Subramanian AS, Scott CEH. A randomised controlled trial of transforaminal endoscopic discectomy vs microdiscectomy. Eur Spine J. Mar 2017; 26(3): 847-856. PMID 27885470
- 59. Hsu HT, Chang SJ, Yang SS, et al. Learning curve of full-endoscopic lumbar discectomy. Eur Spine J. Apr 2013; 22(4): 727-33. PMID 23076645
- 60. Kim MJ, Lee SH, Jung ES, et al. Targeted percutaneous transforaminal endoscopic diskectomy in 295 patients: comparison with results of microscopic diskectomy. Surg Neurol. Dec 2007; 68(6): 623-631. PMID 18053857
- 61. Qu JX, Li QZ, Chen M : Comparative study of PTED and MED for monosegmentnlumbar disc herniation. Chin J Bone Joint Inj 32 : 70-71,2017
- 62. Wang H, Cheng J, Xiao H, et al. Adolescent lumbar disc herniation: experience from a large minimally invasive treatment centre for lumbar degenerative disease in Chongqing, China. Clin Neurol Neurosurg. Aug 2013; 115(8): 1415-9. PMID 23419406

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

- 63. Zhao W, Li CQ, Zhou Y, Wang J, Zheng WJ: Surgical treatment of thenlumbar disc herniated discs using transforaminal endoscopic surgerynsystem. Orthop J China 20: 1191-1195, 2012
- 64. Yoon SM, Ahn SS, Kim KH, et al. Comparative Study of the Outcomes of Percutaneous Endoscopic Lumbar Discectomy and Microscopic Lumbar Discectomy Using the Tubular Retractor System Based on the VAS, ODI, and SF-36. Korean J Spine. Sep 2012; 9(3): 215-22. PMID 25983818
- 65. Li M, Yang H, Yang Q. Full-Endoscopic Technique Discectomy Versus Microendoscopic Discectomy for the Surgical Treatment of Lumbar Disc Herniation. Pain Physician. 2015; 18(4): 359-63. PMID 26218939
- 66. Sinkemani A, Hong X, Gao ZX, et al. Outcomes of Microendoscopic Discectomy and Percutaneous Transforaminal Endoscopic Discectomy for the Treatment of Lumbar Disc Herniation: A Comparative Retrospective Study. Asian Spine J. Dec 2015; 9(6): 833-40. PMID 26713113
- 67. Tu Z, Li YW, Wang B, et al. Clinical Outcome of Full-endoscopic Interlaminar Discectomy for Single-level Lumbar Disc Herniation: A Minimum of 5-year Follow-up. Pain Physician. Mar 2017; 20(3): E425-E430. PMID 28339442
- 68. Li H, Jiang C, Mu X, et al. Comparison of MED and PELD in the Treatment of Adolescent Lumbar Disc Herniation: A 5-Year Retrospective Follow-Up. World Neurosurg. Apr 2018; 112: e255-e260. PMID 29325949
- 69. Abudurexiti T, Qi L, Muheremu A, et al. Micro-endoscopic discectomy versus percutaneous endoscopic surgery for lumbar disk herniation. J Int Med Res. Sep 2018; 46(9): 3910-3917. PMID 29900752
- 70. Chen Z, Zhang L, Dong J, et al. Percutaneous transforaminal endoscopic discectomy compared with microendoscopic discectomy for lumbar disc herniation: 1-year results of an ongoing randomized controlled trial. J Neurosurg Spine. Mar 2018; 28(3): 300-310. PMID 29303469
- 71. Liu T, Zhou Y, Wang J, et al. Clinical efficacy of three different minimally invasive procedures for far lateral lumbar disc herniation. Chin Med J (Engl). Mar 2012; 125(6): 1082-8. PMID 22613535
- 72. Wu XC, Zhou Y, Li CQ. Percutaneous tranforaminal endoscopic discectomy versus microendoscopic discectomy for lumbar disc herniation: a prospective randomized controlled study. J Third Mil Med Univ. 2009;31(9):843-846.
- 73. Yang L, Liao XQ, Zhao XJ, et al. Comparison of surgical outcomes between percutaneous transforaminal endoscopic discectomy and micro-endoscopic discectomy for lumbar disc herniation. China J Endosc. 2015;21(9):962-965
- 74. Duan XF, Jin W, Chen JJ, et al. Contrast observation of comparing microendoscopic discectomy with percutaneous endoscopic lumbar discectomy for the treatment of simple lumbar disc herniation. Chin J Clin. 2016;10(1):144-147
- 75. Zhao XW, Han K, Ji ZW, et al. Comparison of efficacy between microendoscopic discectomy and percutaneous endoscopic lumbar discectomy for treatment of lumbar disc herniation. Prog Mod Biomed. 2016;16(23):4454-4457

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

- 76. Ding YZ, Hu JN, Zhou Y, et al. Study on the effect contrast between microendoscopic discectomy and percutaneous endoscopic lumbar discectomy using TESSYS technique for the treatment of lumbar disc herniation. J Cervicodynia & Lumbodynia. 2017;38(5):492-493
- 77. Li ZY, Guo PG, Han D, et al. Analysis of curative effects and prognosis in different procedures of discectomy for patients with lumbar disc herniation. J Clin Med Pract. 2017;21(15):149-150,158
- 78. Liu HP, Hao DJ, Wang XD, et al. Comparison of two surgeries in treatment of lumbar disc herniation. Chin J Pain Med. 2017;23(6):438-442
- 79. Luo DK, Zhou NX, Zhao HW, et al. Clinical effectiveness of minimally invasive treatment for lumbar disc herniation. Orthopaedics. 2017;8(6):439-444
- 80. Qu JX, Li QZ, Chem M, et al. Comparison of the efficacies between percutaneous transforaminal endoscopic discectomy and microendoscopic discectomy for the treatment of single-segmental lumbar disc herniation. Chin J Bone Jt Inj. 2017;32(1):70-71
- 81. Chen Q, Qin L, Li MW, et al. Comparison of the therapeutic effect of percutaneous transforaminal endoscopic discectomy and posterior discectomy on senile single segmental lumbar disc herniation. Chin J Front Med Sci. 2018;10(2):60-64
- 82. Wu YM, Bai M, Yin HP, et al. Comparison of the efficacies between two kinds of minimally invasive procedures for the treatment of simple lumbar disc herniation. J Pract Orthop. 2018;24(4):357-360
- 83. Belykh E, Giers MB, Preul MC, et al. Prospective Comparison of Microsurgical, Tubular-Based Endoscopic, and Endoscopically Assisted Diskectomies: Clinical Effectiveness and Complications in Railway Workers. World Neurosurg. Jun 2016; 90: 273-280. PMID 26898494
- 84. Chen HC, Lee CH, Wei L, et al. Comparison of percutaneous endoscopic lumbar discectomy and open lumbar surgery for adjacent segment degeneration and recurrent disc herniation. Neurol Res Int. 2015; 2015: 791943. PMID 25861474
- 85. Choi KC, Kim JS, Park CK. Percutaneous Endoscopic Lumbar Discectomy as an Alternative to Open Lumbar Microdiscectomy for Large Lumbar Disc Herniation. Pain Physician. Feb 2016; 19(2): E291-300. PMID 26815256
- 86. Garg B, Nagraja UB, Jayaswal A. Microendoscopic versus open discectomy for lumbar disc herniation: a prospective randomised study. J Orthop Surg (Hong Kong). Apr 2011; 19(1): 30-4. PMID 21519072
- 87. Hermantin FU, Peters T, Quartararo L, et al. A prospective, randomized study comparing the results of open discectomy with those of video-assisted arthroscopic microdiscectomy. J Bone Joint Surg Am. Jul 1999; 81(7): 958-65. PMID 10428127
- 88. Huang TJ, Hsu RW, Li YY, et al. Less systemic cytokine response in patients following microendoscopic versus open lumbar discectomy. J Orthop Res. Mar 2005; 23(2): 406-11. PMID 15734255
- 89. Hussein M, Abdeldayem A, Mattar MM. Surgical technique and effectiveness of microendoscopic discectomy for large uncontained lumbar disc herniations: a prospective, randomized, controlled study with 8 years of follow-up. Eur Spine J. Sep 2014; 23(9): 1992-9. PMID 24736930

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

- 90. Kleinpeter G, Markowitsch MM, Böck F. Percutaneous endoscopic lumbar discectomy: minimally invasive, but perhaps only minimally useful? Surg Neurol. Jun 1995; 43(6): 534-9; discussion 540-1. PMID 7482230
- 91. Lee DY, Shim CS, Ahn Y, et al. Comparison of percutaneous endoscopic lumbar discectomy and open lumbar microdiscectomy for recurrent disc herniation. J Korean Neurosurg Soc. Dec 2009; 46(6): 515-21. PMID 20062565
- 92. Martín-Láez R, Martínez-Agüeros JA, Suárez-Fernández D, et al. Complications of endoscopic microdiscectomy using the EASYGO! system: is there any difference with conventional discectomy during the learning-curve period?. Acta Neurochir (Wien). Jun 2012; 154(6): 1023-32. PMID 22446750
- 93. Mayer HM, Brock M. Percutaneous endoscopic discectomy: surgical technique and preliminary results compared to microsurgical discectomy. J Neurosurg. Feb 1993; 78(2): 216-25. PMID 8267686
- 94. Ohya J, Oshima Y, Chikuda H, et al. Does the microendoscopic technique reduce mortality and major complications in patients undergoing lumbar discectomy? A propensity score-matched analysis using a nationwide administrative database. Neurosurg Focus. Feb 2016; 40(2): E5. PMID 26828886
- 95. Pan L, Zhang P, Yin Q. Comparison of tissue damages caused by endoscopic lumbar discectomy and traditional lumbar discectomy: a randomised controlled trial. Int J Surg. 2014; 12(5): 534-7. PMID 24583364
- 96. Righesso O, Falavigna A, Avanzi O. Comparison of open discectomy with microendoscopic discectomy in lumbar disc herniations: results of a randomized controlled trial. Neurosurgery. Sep 2007; 61(3): 545-9; discussion 549. PMID 17881967
- 97. Ruetten S, Komp M, Merk H, et al. Full-endoscopic interlaminar and transforaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study. Spine (Phila Pa 1976). Apr 20 2008; 33(9): 931-9. PMID 18427312
- 98. Ruetten S, Komp M, Merk H, et al. Recurrent lumbar disc herniation after conventional discectomy: a prospective, randomized study comparing full-endoscopic interlaminar and transforaminal versus microsurgical revision. J Spinal Disord Tech. Apr 2009; 22(2): 122-9. PMID 19342934
- 99. Sasaoka R, Nakamura H, Konishi S, et al. Objective assessment of reduced invasiveness in MED. Compared with conventional one-level laminotomy. Eur Spine J. May 2006; 15(5): 577-82. PMID 15926058
- 100. Schizas C, Tsiridis E, Saksena J. Microendoscopic discectomy compared with standard microsurgical discectomy for treatment of uncontained or large contained disc herniations. Neurosurgery. Oct 2005; 57(4 Suppl): 357-60; discussion 357-60. PMID 16234685
- 101. Teli M, Lovi A, Brayda-Bruno M, et al. Higher risk of dural tears and recurrent herniation with lumbar micro-endoscopic discectomy. Eur Spine J. Mar 2010; 19(3): 443-50. PMID 20127495
- 102. Ruetten S, Komp M, Merk H, et al. Use of newly developed instruments and endoscopes: full-endoscopic resection of lumbar disc herniations via the interlaminar and lateral transforaminal approach. J Neurosurg Spine. Jun 2007; 6(6): 521-30. PMID 17561740

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

- 103. Ruetten S, Komp M, Merk H, et al. Full-endoscopic cervical posterior foraminotomy for the operation of lateral disc herniations using 5.9-mm endoscopes: a prospective, randomized, controlled study. Spine (Phila Pa 1976). Apr 20 2008; 33(9): 940-8. PMID 18427313
- 104. Lee SH, Chung SE, Ahn Y, et al. Comparative radiologic evaluation of percutaneous endoscopic lumbar discectomy and open microdiscectomy: a matched cohort analysis. Mt Sinai J Med. Sep 2006; 73(5): 795-801. PMID 17008941

Policy History

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

11/18/2025 Utilization Management Committee review/approval. New policy.

Next Scheduled Review Date: 11/2026

Coding

The five character codes included in the Health Plan Medical Policy Coverage Guidelines are obtained from Current Procedural Terminology (CPT®)‡, copyright 2025 by the American Medical Association (AMA). CPT is developed by the AMA as a listing of descriptive terms and five character identifying codes and modifiers for reporting medical services and procedures performed by physician.

The responsibility for the content of the Health Plan Medical Policy Coverage Guidelines is with the Health Plan and no endorsement by the AMA is intended or should be implied. The AMA disclaims responsibility for any consequences or liability attributable or related to any use, nonuse or interpretation of information contained in the Health Plan Medical Policy Coverage Guidelines. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. Any use of CPT outside of the Health Plan Medical Policy Coverage Guidelines should refer to the most current Current Procedural Terminology which contains the complete and most current listing of CPT codes and descriptive terms. Applicable FARS/DFARS apply.

CPT is a registered trademark of the American Medical Association.

Codes used to identify services associated with this policy may include (but may not be limited to) the following:

Code Type	Code
CPT	0274T, 0275T, 62287, 62380
HCPCS	C2614
ICD-10 Diagnosis	All related Diagnoses

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

*Investigational – A medical treatment, procedure, drug, device, or biological product is Investigational if the effectiveness has not been clearly tested and it has not been incorporated into standard medical practice. Any determination we make that a medical treatment, procedure, drug, device, or biological product is Investigational will be based on a consideration of the following:

- A. Whether the medical treatment, procedure, drug, device, or biological product can be lawfully marketed without approval of the U.S. Food and Drug Administration (FDA) and whether such approval has been granted at the time the medical treatment, procedure, drug, device, or biological product is sought to be furnished; or
- B. Whether the medical treatment, procedure, drug, device, or biological product requires further studies or clinical trials to determine its maximum tolerated dose, toxicity, safety, effectiveness, or effectiveness as compared with the standard means of treatment or diagnosis, must improve health outcomes, according to the consensus of opinion among experts as shown by reliable evidence, including:
 - 1. Consultation with technology evaluation center(s);
 - 2. Credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community; or
 - 3. Reference to federal regulations.

**Medically Necessary (or "Medical Necessity") - Health care services, treatment, procedures, equipment, drugs, devices, items or supplies that a Provider, exercising prudent clinical judgment, would provide to a patient for the purpose of preventing, evaluating, diagnosing or treating an illness, injury, disease or its symptoms, and that are:

- A. In accordance with nationally accepted standards of medical practice;
- B. Clinically appropriate, in terms of type, frequency, extent, level of care, site and duration, and considered effective for the patient's illness, injury or disease; and
- C. Not primarily for the personal comfort or convenience of the patient, physician or other health care provider, and not more costly than an alternative service or sequence of services at least as likely to produce equivalent therapeutic or diagnostic results as to the diagnosis or treatment of that patient's illness, injury or disease.

For these purposes, "nationally accepted standards of medical practice" means standards that are based on credible scientific evidence published in peer-reviewed medical literature generally recognized by the relevant medical community, Physician Specialty Society recommendations and the views of Physicians practicing in relevant clinical areas and any other relevant factors.

‡ Indicated trademarks are the registered trademarks of their respective owners.

NOTICE: If the Patient's health insurance contract contains language that differs from the Health Plan's Medical Policy definition noted above, the definition in the health insurance contract will be relied upon for specific coverage determinations.

Medical Policy # MA-161

Original Effective Date: 02/01/2026 Current Effective Date: 02/01/2026

NOTICE: Medical Policies are scientific based opinions, provided solely for coverage and informational purposes. Medical Policies should not be construed to suggest that the Health Plan recommends, advocates, requires, encourages, or discourages any particular treatment, procedure, or service, or any particular course of treatment, procedure, or service.

NOTICE: Federal and State law, as well as contract language, including definitions and specific contract provisions/exclusions, take precedence over Medical Policy and must be considered first in determining eligibility for coverage.

NOTICE: All codes listed on the Medical Policy require prior authorization. This ensures appropriate utilization and alignment with current clinical guidelines.

Medicare Advantage Members

Established coverage criteria for Medicare Advantage members can be found in Medicare coverage guidelines in statutes, regulations, National Coverage Determinations (NCD)s, and Local Coverage Determinations (LCD)s. To determine if a National or Local Coverage Determination addresses coverage for a specific service, refer to the Medicare Coverage Database at the following link: https://www.cms.gov/medicare-coverage-database/search.aspx. You may wish to review the Guide to the MCD Search here: https://www.cms.gov/medicare-coverage-database/help/mcd-benehelp.aspx.

When coverage criteria are not fully established in applicable Medicare statutes, regulations, NCDs or LCDs, internal coverage criteria may be developed. This policy is to serve as the summary of evidence, a list of resources and an explanation of the rationale that supports the adoption of this internal coverage criteria.

InterOual®

Interqual® is utilized as a source of medical evidence to support medical necessity and level of care decisions. InterQual® criteria are intended to be used in connection with the independent professional medical judgment of a qualified health care provider. InterQual® criteria are clinically based on best practice, clinical data, and medical literature. The criteria are updated continually and released annually. InterQual® criteria are a first-level screening tool to assist in determining if the proposed services are clinically indicated and provided in the appropriate level or whether further evaluation is required. The utilization review staff does the first-level screening. If the criteria are met, the case is approved; if the criteria are not met, the case is referred to the medical director.